Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141669, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460848

RESUMO

Soil contamination by heavy metals has become a serious threat to global food security. The application of silicon (Si)-based materials is a simple and economical method for producing safe crops in contaminated soil. However, the impact of silicon on the heavy-metal concentration in plant roots, which are the first line in the chain of heavy-metal entering plants and causing stress and the main site of heavy-metal deposition in plants, remains puzzling. We proposed a process-based model (adsorption-diffusion model) to explain the results of a collection of 28 experiments on alleviating toxic metal stress in plants by Si. Then we evaluated the applicability of the model in Si-mitigated trivalent chromium (Cr[III]) stress in rice, taking into account variations in experimental conditions such as Cr(III) concentration, stress duration, and Si concentration. It was found that the adsorption-diffusion model fitted the experimental data well (R2 > 0.9). We also verified the binding interaction between Si and Cr in the cell wall using SEM-EDS and XPS. In addition, we designed a simplified biomimetic device that simulated the Si in cell wall to analyze the dual-action switch of Si from increasing Cr(III) adsorption to blocking Cr(III) diffusion. We found that the adsorption of Cr(III) by Si decreased from 58% to 7% as the total amount of Cr(III) increased, and finally the diffusion blocking effect of Si dominated. This study deepens our understanding of the role of Si in mitigating toxic metal stress in plants and is instructive for the research and use of Si-based materials to improve food security.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Silício/metabolismo , Oryza/metabolismo , Adsorção , Biomimética , Metais Pesados/metabolismo , Plantas/metabolismo , Raízes de Plantas/metabolismo , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
2.
Sci Total Environ ; 920: 170909, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350562

RESUMO

Global climate warming, driven by human activities emitting greenhouse gases like CO2, results in adverse effects, posing significant challenges to human health and food security. In response to this challenge, it is imperative to enhance long-term carbon sequestration, including phytolith-occluded carbon (PhytOC). Currently, there is a dearth of research on the assessment and distribution of the stability of PhytOC. Additionally, the intricate relationships and effects between the stability and environmental factors such as climate and soil remain insufficiently elucidated. Our study provided a composite assessment index for PhytOC stability based on a rapid solubility assay and principal component analysis. The machine learning models that we developed in this study, utilize experimentally and publicly accessible environmental data on large spatial scales, facilitating the prediction and spatial distribution mapping of the PhytOC stability using simple kriging interpolation in wheat ecosystems across China. We compared and evaluated 10 common classification machine learning models at 10-fold cross-validation. Based on the overall performance, the Stochastic Gradient Boosting model (GBM) was selected as predictive model. The stability is influenced by dynamic and complex environments with climate having a more significant impact. It was evident that light and temperature had a significant positive direct relationship with the stability, while the other factors showed indirect effects on the stability. PhytOC stability exhibited obvious zonal difference and spatial heterogeneity, with the distribution trend gradually decreasing from the southeast to the northwest in China. Overall, our research contributed to reducing greenhouse gas emissions and achieving global climate targets, working towards a more sustainable and climate-resilient future.


Assuntos
Carbono , Triticum , Humanos , Carbono/análise , Ecossistema , Sequestro de Carbono , China , Solo , Dióxido de Carbono/análise
3.
Plant Physiol Biochem ; 207: 108368, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237424

RESUMO

Silicon (Si) has been well-known to enhance plant resistance to heavy-metal stress. However, the mechanisms by which silicon mitigates heavy-metal stress in plants are not clear. In particular, information regarding the role of Si in mediating resistance to heavy-metal stress at a single cell level is still lacking. Here, we developed a hierarchical system comprising the plant, protoplast, and suspension cell subsystems to investigate the mechanisms by which silicon helps to alleviate the toxic effects of trivalent chromium [Cr(III)] in rice. Our results showed that in whole-plant subsystem silicon reduced shoot Cr(III) concentration, effectively alleviating Cr(III) stress in seedlings and causing changes in antioxidant enzyme activities similar to those observed at lower Cr(III) concentrations without silicon added. However, in protoplast subsystem lacking the cell wall, no silicon deposition occurred, leading to insignificant changes in cell survival or antioxidation processes under Cr(III) stress. Conversely, in suspension cell subsystem, silicon supplementation substantially improved cell survival and changes in antioxidant enzyme activities under Cr(III) stress. This is due to the fact that >95% of silicon was on the cell wall, reducing Cr(III) concentration in cells by 7.7%-10.4%. Collectively, the results suggested that the silicon deposited on the cell wall hindered Cr(III) bio-uptake, which consequently delayed Cr(III)-induced changes in antioxidant enzyme activities. This research emphasizes the significance of cell walls in Si-alleviated heavy-metal stress and deepens our understanding of silicon functioning in plants. Furthermore, the hierarchical system has great potential for application in studying the functioning of other elements in plant cell walls.


Assuntos
Metais Pesados , Oryza , Cromo/toxicidade , Antioxidantes/metabolismo , Oryza/metabolismo , Silício/farmacologia , Plantas/metabolismo , Estresse Oxidativo
4.
Sci Total Environ ; 904: 166887, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683860

RESUMO

Heavy metal pollution threatens food security, and rhizosphere acidification will increase the bioavailability of heavy metals. As a beneficial element in plants, silicon can relieve heavy metal stress. However, less attention has been paid to its effects on plant rhizosphere processes. Here, we show that for Japonica (Nipponbare and Oochikara) and Indica (Jinzao 47) rice cultivars, the degree of root acidification was significantly reduced after silicon uptake, and the total organic carbon, citric acid, and malic acid concentrations in rice root exudates were significantly reduced. We further confirmed the results by q-PCR that the expressions of proton pump and organic acid secretion genes were down-regulated by 35-61 % after silicon treatment. Intriguingly, phosphorus allocation, an intensively studied mechanism of rhizosphere acidification, was altered by silicon treatment. Specifically, among total phosphorus in rice seedlings, the soluble proportion increased from 52.0 % to 61.7 %, while cell wall phosphorus decreased from 48.0 % to 32.3 %. Additionally, silicon-mediated alleviation of rhizosphere acidification has positive effects on relieving heavy metal stress. Simulation revealed that low acidification of the nutrient solution resulted in a decrease in bioavailable heavy metal concentrations, thereby reducing rice uptake. We further confirmed that the impediment of rhizosphere acidification led to free-state Cr3+ in solutions decreasing by 43 % and contributed up to 63 % of silicon's mitigation of Cr(III) stress. Overall, we propose a novel mechanism in which silicon reduces heavy metal absorption by increasing plant soluble phosphorus concentration and buffering rhizosphere acidification. This paper provides a unique insight into the role of silicon in plants and, more importantly, a theoretical reference for the rational application of silicon fertilizer to improve phosphorus utilization efficiency, alleviate heavy metal stress, and balance soil pH.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Silício/análise , Rizosfera , Fósforo/metabolismo , Metais Pesados/análise , Solo , Oryza/metabolismo , Plantas/metabolismo , Concentração de Íons de Hidrogênio , Poluentes do Solo/análise
5.
J Hazard Mater ; 457: 131720, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37257379

RESUMO

Trivalent chromium [Cr(III)] is a threat to the environment and crop production. Silicon (Si) has been shown to be effective in mitigating Cr(III) toxicity in rice. However, the mechanisms by which Si reduces Cr(III) uptake in rice are unclear. Herein, we hypothesized that the ability of Si to obstruct Cr(III) diffusion via apoplastic bypass is related to silicic acid polymerization, which may be affected by Cr(III) in rice roots. To test this hypothesis, we employed hydroponics experiments on rice (Oryza sativa L.) and utilized apoplastic bypass tracer techniques, as well as model simulations, to investigate 1) the effect of Si on Cr(III) toxicity and its obstruction capacity via apoplastic bypass, 2) the effect of Cr(III) on silicic acid polymerization, and 3) the relationship between the degree of silicic acid polymerization and its Cr(III) obstruction capacity. We found that Si reversed the damage caused by Cr(III) stress in rice. Si exerted an obstruction effect in the apoplast, significantly decreasing the share of Cr(III) uptake via the apoplastic bypass from 18% to 11%. Moreover, Cr(III) reduced silica particles' radii and increased Si concentration in roots. Modeling revealed that a 5-fold reduction in their radii decreased the diffusion of Cr(III) in apoplast by approximately 17%. We revealed that Cr(III) promoted silicic acid polymerization, resulting in the formation of a higher number of Si particles with a smaller radius in roots, which in turn increased the ability of Si to obstruct Cr(III) diffusion. This negative feedback regulatory mechanism is novel and crucially important for maintaining homeostasis in rice, unveiling the unique role of Si under Cr(III) ion stress and providing a theoretical basis for promoting the use of Si fertilizer in the field.


Assuntos
Oryza , Silício/farmacologia , Ácido Silícico/farmacologia , Cromo/toxicidade , Retroalimentação , Raízes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...